Skip to main content

benchmark_docker

""" 
Basic example of scraping pipeline using SmartScraper from text
"""

from scrapegraphai.graphs import SmartScraperGraph
from scrapegraphai.utils import prettify_exec_info

files = ["inputs/example_1.txt", "inputs/example_2.txt"]
tasks = ["List me all the projects with their description.",
"List me all the articles with their description."]


# ************************************************
# Define the configuration for the graph
# ************************************************

graph_config = {
"llm": {
"model": "ollama/mistral",
"temperature": 0,
"format": "json", # Ollama needs the format to be specified explicitly
# "model_tokens": 2000, # set context length arbitrarily
},
"embeddings": {
"model": "ollama/nomic-embed-text",
"temperature": 0,
}
}

# ************************************************
# Create the SmartScraperGraph instance and run it
# ************************************************

for i in range(0, 2):
with open(files[i], 'r', encoding="utf-8") as file:
text = file.read()

smart_scraper_graph = SmartScraperGraph(
prompt=tasks[i],
source=text,
config=graph_config
)

result = smart_scraper_graph.run()
print(result)
# ************************************************
# Get graph execution info
# ************************************************

graph_exec_info = smart_scraper_graph.get_execution_info()
print(prettify_exec_info(graph_exec_info))